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ABSTRACT

A communication system, which transmits letters from an M-ary
source alphabet through an additive white Gaussian noise channel, is
considered. The source letters are encoded for transmission using an
M-ary block code. Code words are transmitted bit by bit through the
channel. The receiver makes hardbitdecisions on the received signals,
performs a correlation operation to determine the likeliest transmUted
code word, and then decodes this word to yield a received letter.

Two types of M-ary block codes are considered. For each type
we attempt to derive the probability P0B of a block error, given various
values of M (number of blocks), N (bits per block, or block length), and
Peb (the probability of a bit error).

The analysis points out the need for investigation of a special-
purpose statistical device so that PeB canbe determined for large values
of M and N.

PROBLEM STATUS

This is an interim report: work on the problem is continuing.

AUTHORIZATION

NRL PROBLEM R01-46
Project X-3297, Task H (formerly X-1508, Task H)

Manuscript submitted January 18, 1971.
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PROBABILITY-OF-ERROR CONSIDERATIONS FOR
CERTAIN M-ARY BLOCK CODES WITH BIT-BY-BIT DECISIONS

M-ARY COMMUNICATION SYSTEM

The communication system that will be considered in this report is shown in Fig. 1.
The source consists of an M-ary alphabet A with letters al, a2 . *. . 7 aM. Every T
seconds the source emits a letter aj, which the encoder accepts as an input. The en-
coder has stored an M-ary code consisting of M blocks B,, B 2 ,.' . . BMP each having N
bits (zeros and ones), and an encoding function f, which is a one to one mapping of the
alphabet A onto the M blocks. For each received letter al the encoder function f
determines a corresponding block Bi. Every T seconds the encoder emits a block of
N bits bijO = 1, 2,. . . , N) which the transmitter accepts as an input. The transmitter
is equipped with a binary signaling set (SO (t), Sl(t)}. The transmitter uses the received
bits bij ( = 1, 2, . . ., N) to determine the signaling sequence [Si, (t), S12 (t .. . SiN (t)1.
One rule which could be used to determine the N bit signals Si (t) (j = 1, . .. ,N) is to set
Sij(t) = So(t) if bij 0, and Sij(t) -sl(t) if bi.. = . Every T seconds the transmitter
emits a sequence of N bit signals which the jchannel accepts as an input. The channel
adds white Gaussian noise to each bit signal resulting in a sequence of N distorted bit
signals [xI (t), X2 ()2 .. ,XN (taj. The receiver accepts such a sequence of N distorted
bit signals every T seconds, employs a bit-by-bit detection procedure, which depends
on the type of binary signaling set utilized at the transmitter, and makes a bit decision
dj on each distorted bit signal x1(t) (j = 1, 2,. . . , N). This block D of N bit decisions is
the receiver's estimate of the transmitted block Bi. Every T seconds a block of bit
decisions D is transferred to the decoder which accepts it as an input. The decoder
has stored the same encoding function f and M-ary block code(M by N matrix) which is
stored in the encoder. The decoder determines the correlation between the block of
bit decisions D and each of the blocks Bi(i = 1, 2 ... ., M), i. e., PI, P2 ... PM and
chooses the maximum (PMAX) among these M values.

If zMAX = pj, then this implies that the bit decision block D is most like block B.
Using the inverse encoding function f- t , which exists as f is one to one and onto the'
receiver determines the likeliest transmitted letter, i. e., the letter a, corresponding
to the block Ba. Every T seconds a letter is transferred to the destination.

If aj = ai, then there was no error in transmitting the letter through our M-ary
communication system. If aj 7 a., then an error has occurred. An error occurs if
the noise causes a sufficient number of errors in the block of bit decisions D so that
,MAX Pi We will assume also that any correlation ties result in an error, i. e., if
PMAX =Pi = pj (i :t j), then an error has occurred. Further we can allow the encoding
function f, the M-ary block code, and the binary signaling set to change for each letter
transmitted through our M-ary communication system.

M-ARY BLOCK CODES

The type of M-ary block code utilized at the encoder and decoder is of great im-
portance in minimizing errors. We will consider the error-correcting capabilities of
two types of M-ary block codes.

I
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The first type of M-ary block code is called the M-ary equidistributed random
orthogonal (ERO) block code. If Nxi and Nyi denote the number of zeros and ones,
respectively, in block Bi (i = 1, 2, ... , M), and pi; denotes* the unnormalized correlation
between blocks Bi and Bi (i, = 1, 2, . . ., M), i. e., the number of bit agreements minus
the number of bit disagreements between Bi and Bj, then for an M-ary ERO block code
we have, assuming N/2 and N/4 are integers, the conditions

(i) N.i = Nyi = N/2 (i = 1, 2, . . ., M), i. e., there are an equal number of zeros and
ones in each block, and

(Hii) Pi; , = | ( i j = l, 2 .. M);

That is, between any pair of blocks there are an equal number (N/2) of bit agreements
and bit disagreements. Due to conditions (i) and (ii) we must have M < N - 1. '

By definition, the all zeros and all ones blocks do not belong to any M-ary ERO block
code.

An example of an M-ary ERO block code for M = 3 and N = 8 is given by

Bi = [0, 1, 1, 0, 1, 0, 0, 1]

B2 = [0, 1, 0, 1, 0, 1, 0, 1]

B3 = [0, 0, 1, 1, 1, 1, 0, 0]

The second type of M-ary block code is called the M-ary pseudo-orthogonal (PO)
block code. An M-ary PO block code is defined in the following manner: the N bits of
eaoh block 1i(i = 1, 2, ... ,M ) are determined from N independent Bernoulli trials where,
for each trial k(k = 1,2, .2 . ,N), P(bik = 0) = P(bik = 1) = /2. Further, each block is
determined in this manner independently of all other blocks. There is no restriction on
M for an M-ary PO block code. If Nxi and Nyj represent the number of zeros and ones,
respectively, in block B1, then for an M-ary PO block code, N i and Ny1 are random
variables having a binomial distribution B(n, p) with parameters n = N and p = 1/2 for
each i = 1, 2,. . . , M. Also, if Dij denotes the number of bit disagreements between
blocks 8i and B1, then, for an M-ary PO block code, D1j is a random variable having
a binomial distribution B(n, p) with parameters n= N and p = 1/2 for all i, j = 1, 2, .. .,M
where i 7 j .

An example of an M-ary PO block code for M = 3 and N = 8 is given by

BI = [l, 1, 1. 0, 0, 0, 0, 1]

B2 = [11, 1, 0, 1, 1, 0, 0, 12

B3 = [O, 0, 0, 0, 0, 1, 0. 1)

N

Pi; E(Zbik e bk] - [bik E blk>1 where . denotes summation modulo two (exclusive or) and e

denotes equivalence (not exclusive or).

3
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In this example, NDl = 5, Nyl = 3, NX2 = 3, Ny 2 = 5, NX 3 = 6, NY3 = 2, D1 2 = 4,
D13 = 3, and D2 3 5.

Methods of generating M-ary ERO and M-ary P0 block codes are discussed in App.
A. Also in App. A is a discussion of the effect of a bias in the generation of M-ary PO
block codes.

PROBABILITY PeB OF A BLOCK ERROR

Introduction

Now we will examine the probability of an error for M-ary ERO and PO block codes.
Since each source letter is transmitted in the form of a block of N bits, we will refer to
the probability of an error with respect to our M-ary communication system, i.e. the
probability that the received letter does not equal the transmitted letter, as the proba-
bility of a block error, which will be denoted by PBe The probability of a block error
depends functionally on the type of block code employed (ERO or PO), the number M
of blocks in the code, the number of bits N in each block, and the probability of a bit
error, which will be denoted by Peb The probability of a bit error is determined by
the type of binary signaling employed at the transmitter and the type of detection employed
at the receiver.

PeB for Binary Block Codes

We consider now the determination Of PB8 for binary (M = 2) block codes.

If B - (BI, B2 Ss a binary ERO block code, then from condition (ii) of ERO blocks
we know, assuming that N/2 and N/4 are integers, that there are exactly N/2 bit agree-
ments and N/2 bit disagreements between B1 and B2. In determining P,, we need con-
sider only the N/2 bit disagreements. This is so because bit decision errors affect the
correlation decision only with respect to these bits. EHence, a block error occurs only
with N/4 or more bit decision errors in the N/2 bit disagreements because N/4 bit
decision errors cause a correlation tie (p .. = p1 = 02)t and more than N/4 bit decision
errors cause a correlation error (p1 < p2 = pa if B1 was transmitted, or P2 < =I

if B2 was transmitted). Hence,

N/2 /N/2\ pk, QN/2-k
yell (ERO, 2, N, PFb) = ( k ) kb ek

kc N/4

These curves are given in Fig. 2. Clearly, as Peb tends to zero, PeB (ERO, 2,N, Pe)
tends to zero. Binary ERO block codes were considered in a previous report (1). The
curves given in that report can be used to compare PeB for various types of binary
signaling sets and detection procedures.

If B = {Bi, B2} is a binary PO block code, then from the properties of P0 blocks we
know mhat the number of bit disagreements between B8 and % (D12) is a binomially
distributed random variable B(n,p) with parameters n = N and p = 1/2.

Hence, the probability of a disagreements between B, and H2 is given by

PD12(d) = (d -0, 1, .. , N).

4
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Fig. 2 - lock erro probabilty~2:for

block engthN d0

0
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Fig. 2 - Block error probability PB for a
binary (NV2) ERO block code as a function
of the bit error probability F~b and the
block length N

Now, given d disagreements, a block error occurs if more than d/2 (d even) or more
than (d+ 1)/2 (d odd) bit decision errors occur. Thus, given d disagreements, the
probability of a block error is given by

E ~~~(k) p k,, Q ceb 

k=1/2, or (d+1 I/2

Hence

PeE (PO, 2, N, Pb) =l Z (d) (d)PkbQdkJ.

nI1 [1cd/2, or (uI+1)/i2

These curves are given in Fig. 3.

Clearly, as Peb tends to zero, PeB (P0, 2,N, PAb) tends to the value (l/2)N. This
value is the probability that there are zero disagreements between blocks Bn and B2. If
this occurs, then we can have no distinguishable communication of letters since the two
blocks which could be transmitted are exactly alike. Thus, independent of any bit
errors, a correlation tie will always occur, resulting in a block error.

Suppose now that our binary P0 block code has a bias c, i.e., D12 is a binomially
distributed random variable B(n, p) with n = N and p = 1/2 -2,2. Thus, the probability of
d disagreement between 13% and B2 is given by

I
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PD(d)= (r) 1(1/2) - 2f 2]d [(1/2) + 2e2N -d (d = 0, 1, .,, N).

Since the probability of a block error given d disagreements remains unchanged,
we have

PB(PO, (bias), 2, N, Peb) =

1(1/2) + 2,,2]N (( 1/2) - 29~ ] [(/) 9t(N) _11(2) t 2,21
d=l

d

b=d/2, 0r (dtl )/2
(k eb eb '

Clearly, as Peb tends to zero, PeB(PO E(bias),2,NPeb) tends to the valuel(1/2)+2E2P.
Note that this value is larger than the corresponding value [(j )3N found in P0 S(P% 2, N, Pb).
This shows that a bias increases the probability of zero disagreements.

When the P4n (PO, •(bi as), 2 ,N, Peb) curves were computed, it was found that only for
larger values of N and E (say c 2 3 05) and/or for Peb small could any significant
difference be found from the PeB (P02 , N, P5 b) values.

Minimum Distance Considerations for M-ary PO Block Codes

Let us determine the asymptotic value of PgB(PO,M , N, Peb) as Peb tends to zero.
First, we consider the probability that, given M and N, the minimum number of dis-
agreements between the transmitted block and any other PO block is dn Let us denote
this probability by P(dQfi,, M, N). It is not difficult to show that this probability is given by

6
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P(d.,in M, N) = I dmin 0 O. 1, ... , N-1

M-1

k=t

1 , d.i N
2Nm-1

These curves are given for various values of M and N in Fig. 4. Now the asymptotic
value of PeB (Po, M, N, Peb) as Peb tends to zero is determined by the probability that the
number of disagreements between the transmitted block and any of the other PO blocks
is zero, i.e., P(din = 0,M,N). This value is given by

P(d~i ° M, N) = _M1 (N_ 1) 

Table 1 gives asymptotic values of P 5B for various values of M and N.

Now suppose we have an C bias. Then letting

= ) [(1/2) - 29]2 [(1/2) +2 2E]N21

N

Y= (N) [(1/2) -2, ]j [(1/2) + 2c 2]N-
J=dmtntl

we have

(kN-) XkyM-k, di. 0, 1, ... , N-1

P (dni I M, N, E (bias))

P (din 0,= M, N, e(bias)) =N( ) [(1/2) + 2,2] {l - E(1/2) + 2s2] ).
Tables 2 to 6 give values for P(d,, 1 , = 0, MN, E(bias) for E = 0. 001, 0. 01, 0. 05, 0. 1, and
0.15, and various values of M and N. Comparing these values with the values for P(dmin=
0, M, N, one can clearly see the effect of a bias on the asymptotic values for an M-ary
PO block code.

and

and

7

[( 1/2) - 2,F 2] "(M-I ), d .. i�' = N

- k

N

min)

2N -
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(N = 128) (N = 256)

dN j2

(N = 512)

512
dmin

(N = 1000)

Fig. 4 - Probability P that, for the indicated values of M and N, the
minimum number of bit disagreements between the transmitted block
and any other PO block is dm..i,. The curves are grouped according
to the choice of N (number of bits In each block M).
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Asymptotic Values of P e3

3 4

Table I
(PO e, M, N. Peb) as PC-rO with e - 0.

8 16 32 64

4 6.25*10-2 1.21094*10cC 1.76025*10CC 3.63499*10' 6. 20188*1 0 8. 6 475 9 *10o 9.82853*101
-- --- - -- - -- -

8 3.90625*10 7, 79724*10-3 1.16730*10-2 2.70254*10-2 5,70184*10-2 1.14259*10-1 2.18528*10-1

16 1. 52588*10- 5 3.05173*10-5 4. 57757*10- 1 ,06807*10- 2 . 2 8 8 57 *1 0 - 4.72914*10 4 9.60849*10o

32 2e32831*10 '0 4.65661*10'1 6,98492*10 1.62981*10-9 3.49246*10 - 7 . 2 177 5*1 0 -( 1.46683*10-

-20 1 19 1 I19 418
64 5,42101*10 1.08420*10C 1.62630*10-19 3.79481*10C 8.13152*101 1.68051*1048 3,41524*10

128 2.93874*10 5.87747*10- 8.81621*10'39 2,05712*10 38 4.40810*10 89.1100*1038 1.85140*10-7-78 77~~~-- - - -- - -- -----------
256 8.63617*10 78 1.72723*10-77 2.59085*10 7 6.04532*10-77 1.29543*10- 7 6 2.677721*10-76 5.44079*10-7 

~512 7.45834*10-1 55 1.49167*10 154 2 23750*10-C 5 4 5. 22084*101 5 4 1. 11875*1053 2.31209*10- 1 5 3 4.69875*10- 1 5 3

1000 9.33264*10 -n402 1,86653*10-301 2.79979*10-30' 6.53285*10-301 1l39990*1l 3 00 2.8 9 312 *l0-r30 5.87956*10 °0

L - - .

\ MN\ 2

I-

r
E:v

>zWr,
z
e
N



Table 2

Asymptotic Values of PeB (PO, E, M, N, Pe2) asPeb -- Owith = 0. 001.

3 4 3 2 64

.096*10' 1.76028*10-' 3.63504*10-1 6.20194*10 8.64763*10 l 9.82854*10-

3749*10-3 1.16734*10-' 2.70262*10 2 5.70202*10-2 1.14263*10-1 2.18534*10-1

593*10 5 4. 57786*10-5 1.06813*10 4 2.28872*104 4.72944*10-4 9.60911*104

;721*10- 6.98581*10-1 1.63002*10-9 3.49291*10-9 7.21867*10-9 1.46702*10' '*

0
11919 19 -19 -19 -- I

M48*10- 1.62672*10- 3.79568*10- 8. 13360*10- 1.68094*10C 3.41611*10 N,

I.-
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Table 3

Asymptotic Values of Pen (PO, e, M, N, Peb ) as Pe-n-m with O. 01.

3 4 ff 8 16 32 64

1281*10-1 1.76289*101 3.63975*10-1 6.20795*10 1 8.65205*10-1 9.82968*10 n

2218*10 1.17103*102 2.71110*10-2 5.71961*10n2 1.14604*10-1 2,19146*10l

7132*10-5 4.60695*10 1.07492*10' 2,30326*104 4.75949*10 94 6 7014 *10 -

L659*10-1 7.07488*10- 1.65081*10- 3.53744*10- 7.31071*109 1.48573*10

L2 31 *1 0-Q9 1.66847*10-19 3.89309*101-9 8.34233*10-19 1. 7 2 4 0 8 *1 0 aS 3.50378*101S8

8617*1fl0 Q Q27 *10f9 2 16516+10 38 4.BA8R3*1fl0 538 g NSS ln3 I nAQlAo,-
3n7 ;



Table 4

Asymptotic Values of PeB (PO, i, M, N, Pbe) as Peb *Owith E = 0.05.

3 4 8 16 32 64

25846*10-l 1.82699*10C' 3.75462*10-1 6.35321*10-1 8. 75658*10-1 9.85545*10-'

44193*10-3 1.26361*10- 2 2.92363*10W2 6. 16040*10-2 1.23138*10-1 2.34365*10-1

57839*10-5 5.36754*10-5 1.25238*10-4 2.68348*104 5.54507*10-4 1.12658*10-3

-IQ 91 -40257*10 9.60385*10 2.24090*10 4.80192*10 9.92398*10 2.01681*10 t

04964*10-'9 3. 07446*10-'9 7.17375*10-19 1.53723*10-1 8 3. 17695*10-1' 6.45638*10'18
______________ ______________ ______________ c~~~~~~~~~~~~~~~Cy

I.-
to



Table 5
Asymptotic Values of Pea (PO, e, M, NJ Peb) as Pebo with C 0.10.

3 4 J 8 I 16 32 64

o0886*10-1 2.03701*10-1 4.12271*10-1 6.79831*10-1 9..04987*10-1 9.91633*10'

6634*10 -2 1.59523*10-2 3.68270*10 7.72572*10 2 1.53098*10 2 2.86591*10-1

t1580*10-5 8.57358*10o5 2.00039*10' 4.28606*10 -4 8.85583*10 h4 1.79891*10 3 >

3357*10-9 2.45035*10,9 5,71749*10-9 1.22518*10 4 2.53203*10o4 5.14574*10 48
~~~_ __ _ ___ - - - -- .-- --.- -- ---

,3427*lcft 8 2. 00141*1018 4,66995*1018 1. 00070 *1 1 ' 72.06812*1017 4

---- -e -'---- ---



Table 6

Asymptotic Values of PeB (PO, EM N. Peb) as PG0 Withc =0.15.

4 8 16 32 64

!*101' 2.42008*10' 4.76137*10A' 7.497791-G '1 -l s97029'-1

;*10-2 2.31691*10-2 5.32283*10'2 1.10600*10-1 2.15125*10-C 3.88766*10 -1

M*1C4 1.81735*10 4 4.23997*10 4 9.08346*10 4 1. 87634*10- 3 3.80951*10 "3

7*109 1.10106*104 2.56913*104 5.50528*10 1.13776*107 2.31222*10 -x

___ __ _ __ _ _ _ _ _ __ _ _ _ _ __ 
0

5210~ 7 4.04108*10- 7 9.42919*10' 7 2.02054*10 16 4.17578*10- 8.48627*10 -6 
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In order to be able to compare P(dQIN, M, N, E (bias)) and P(dmin M, N), we computed
P(dmini N, N, >(bias)) for various values of M and N with e = 0.01 and 0. 1. It was found
that given M and N, a value of dm (say 4), depending on M, N, and •, could be determined
such that for 0 < d - < d, P(d 6 1in, M, N, c(bias)) > P(d6)1 ,, ,M, N), and for d < dmin N1

P(dminjtMt N) > P(dtinAMN) e(bins)). When M = 2, d = N/2 ( independent of e), It was found
that for e = 0. 1, the value d was given by that value of dt,,,i, which maximized the value
P(dminh M, N). For < = 0.01, the corresponding value of d was slightly larger than the
value of d for c - 0.1.

Pen for Ternary Block Codes

Next we examine PeB for ternary (M = 3) block codes. In App. B the formula for
PeB is derived for both ternary RRO and Po block codes.

For a ternary ERo block code we have, assuming N/4 is an integer,

N/4-1 N N/4 N/i

Pe0 (ERO, 3 INP b) = ( 4)PJN ( k ) bQeb 
J-O lk(N/4)-J

where

S = 1+ > (N/4) p e N4-L
S = l f E ( L ) b~b(by

L=O

These curves are given in Fig. 5. Clearly, as Peb tends to zero, PeB (ERO, 3,N, Peb) tends
to zero.

For a ternary Po block code we have, using the definitions of D12, D113 d. d, d,, 
d0 , d 1, and dX given in App. B,

PeB{PO, 3, N, Peb) = ( W 2N1 - | (N7 j) 

where

P d)e de-e |A mJ (mno p dm!n-de-J +[ x dl)p did |

JR = (t) eb eb {db,~d
1 1

~ [dke-1 (t- cl) dbQ e -k

W19~~~~~~~~~~~~~~~~~~=

Z = > (ciL d) p~beiee

L~~~~~ ~~~ \ ePe eb

Ldc -d

These curves are given in Fig. 6 for N = 4, 8, 16, 32, 64, and 128. The approximations
described in App. B were used in computing the curves for N = 32, 64, and 128. Due to
the lengthy computation time, N = 128 was the largest value for which the approximation
was computed. Clearly, as P. b tends to zero, PeB (PO, 3,N, Peb.) tends to the asymptotic
value f2N+1 _ 1] /22" which is the value of P(d =0, 3,N).
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PeB for Quaternary Block Codes

Now we examine PeB for quaternary (m = 4) block codes. In App. C the formula for
PeB is derived for quaternary ERO block codes. We have, using the definitions of el, e1 2 ,
e13 and 514 given in App. C, and assuming that N/8 is an integer,

N/S N/S N/S N/8

PeB (ERD, 4NPe E E E E( e, ) (eC2 )
c1=0 eMl" e13 el 1

( Nt 3)(/ Px ) (N/2)-X
e 1 ,3 ] ' e

X = el ± C12 + e13 + e 14

and

1' if e, ± e,3 + e 14 > N/4, or el + et2 + e14 Ž N/4, or el + e,2 + e13 Ž N/4t

IT, otherwise

with

T = A + (1 A) B+ (1-A) (I-B)C

and

N/8

A e

e3,=(N/4 )-(e 1+%,3+e 14)

(_N ) eI34 Q(N/P )e 34
\~3 4 }eb eb

I
z
2~

ra

a.

where
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NIS

B= E I
e'24< ( N/4 )-( el+e 1 2+4e 1 4 )

N/8

C E(!
e123 =(N/4)_- eltel213 )

(e 124) Peb )

N/S ) Pe 123 (N/8) -et2

These curves are given in Fig. 7 for N = 8, 16, 32, 64, and 128. Clearly, as Pe, tends
to zero, PeB (ERO, 4 ,NsPeb) tends to zero. Due to the considerations mentioned in App, C
concerning the computational problems encountered in determining Pl% (ERO, 4 IN, Pit), the
determination and computation of the exact formula for PeB(ERO, M, N, Peu) when M > 4
is clearly not feasible,

Next let us consider the determination of PeB for a quaternaryPO block code.

To determine PeB(PO,4,N, Pb3)' one must be able to determineP(did 23d3), and PeB
giveni d1, d2, and d3 (symbolically, PB I di ,,d2d3), where d1, d2, and d3 represent the dis -
tances between the transmitted block and M-i 3 nontransmitted blocks. If this is pos-
sible, then we have

N hN

Pen(PO, 4, N, Peb) =Z1 E E P(d, d2, d3 ) PeB I dl, d21 d3 .
d 1 O0 d2=1- d 3 =0

Hence, in determining P6B for a quaternaryPOblock code, a triple sum arises.
The computational difficulties in evaluating this expression are due to the problems

I .o

0 
Lt

(L

0.5 0.45 0.4 0.35 0.30 025 0.20 015 01 .0o5

Pee

Fig. 7 -Block error probability PeB fora
quarternary (M=4) ERO block code as a
function of the bit error probability
and the block length N
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involved in the evaluation of PeBId,, d2, d3 since, due to the independence of the blocks,
we have

P(dj, d2 ,d3 ) P(d 1 ) P(d 2 ) P(d3 ) = (d) (d2 ) d3

or in the case of an c bias

P(d 1 ,d2 ,d 3 ) = (N) (N)( )1(1/ 2 )- 2 E2(d1d 2+3 [(1/2) + 22] 1N-(d Id 2+ 3 )

Even the use of P(d 4n,4,N) in the place of P(di, d2, d3), which reduces the triple sum
to a single sum, does not solve the problem of computing PBI d1, d2, d3 since we then
have to compute PeB di,, which involves the additional problem of choosing values for
d 2 and d3, if say di = d,.i,,, and hence introduces considerable error. Due to these con-
siderations the direct calculation of PeB(", 4, N, Peb) was not carried out, and it is clear
that the determination and computation of the exact formula for PeB (PO, m, N, Peb) when
M > 4 is not feasible.

Determination of PLB by Simulation

Since we could not determine PeB (ERO, M, N, Pe b) by exact analytic methods for M > 4,
and since the same is true for PeB (PO, M, N, Peb) when M > 4, we next considered simula-
tion of our M-ary communication system on the digital computer in order to derive
estimates for Fen in either the ERO or PO case. A description of the simulation pro-
gram is given in App. D.

Let us consider the estimation of Pes(ERO, MNPeb) using simulation. If we fix M,
then the parameters affecting the simulation results are Peb, N, and the number of times
n that the simulation program is repeated. If we generate n error blocks each having N
bits, with the probability of a bit error [P(l)] equal to Pebl then we would theoretically
expect KN(n) = nQ,)Peb Q-JK error blocks to have K bit errors. Due to the character-
istics of a particular random-number-generator algorithm, we find experimentally that,
although these theoretical values are rarely met in practice, if we apply a X2 goodness
of fit test to the observed and theoretical values, then we would accept the hypothesis
that the computer is giving us a probability of bit error equal to Pcb.

In order that the relative frequency of a block error should approach PeE (ERO, M, N,
Pet,), we must have n large enough so that, over the range where K bit errors can
influence the block error count, KN(n) is nonzero. This assures that a sufficient number
of useful samples exists to make the results of the simulation meaningful, We might
conclude immediately that KO(n) should be nonzero for N/4 < K c N. Due to the dependency
relations caused by any M-ary ERO block code, we can replace the upper limit of N on
K by a smaller upper limit since beyond this limit the probability of a block error will
necessarily be equal to one. For M = 3, this upper limit becomes (3N/4)-2, and for
M = 4 the upper limit is (5N/8)-l. If it is possible to make RN(n) nonzero over this
restricted range, then the simulation answer can be taken as the relative frequency of
error. The term representing the probability of a block error for N > K L upper limit
+ 1, which is given by

N (N)

k=upper limitjt+l
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may be added to the relative frequency measure to give a better approximation to
Pen (ERO, M,N, Peb)' If n is sufficiently large and Peb >0. 30, then the simulation-derived
relative frequency measure is quite close to Pes(ERO, M, N, Peb) since KN(n) is nonzero
over more than just the restricted range, and hence the additional term is not necessary
and, in fact, is usually redundant as far as the error count is concerned.

The choice of n in practice was governed by the ability to cover as much of the range
of significant values as possible without making the run time of the simulation program
too long, yet allowing enough trials so that the relative frequency would approximate
PB(ERO, M,N,Peb) within an accuracy of 2%. We decided to set n = 10,000 since this
value was consistent with our computational time objective and also allowed a relative
frequency approximation to be significant for Pee (ERO, M, N, Peb) > 0. 01 . Since we always
have the relation that PeS (ERO, 2,N ,P1 ) < PeB (ERO, M, NPeb) for M > 3, and since we know
all the values for PB (ERO, 2, N, pb ,)X we can, given M and N, choose Peb so that Pen (ERo,
2, N, Peb) Ž O. 01, and hence so that PeB (ERO, M, N, Peb) 2 0.0 1 .

Table 7 shows results of the simulation when M = 4 for n = 10, 000 trials per simula-
tion run given various values of N and Peb' The examples given in Table 7 show clearly
the interplay between n, N, and Peb. As an example of the effect of increasing n, if we
had set n = 30, 000 and computed the relative frequency for N = 8 and Peb 0 1. 05, then
the result of simulating PeB would be 3.15 x 10-2, with a run time of 25 see. For small
values of N, we can increase n to gain accuracy without greatly increasing the run time
of the simulation program. For large values of N, accuracy and run time are in direct
competition, such that a greatly increased run time will result in only a slight gain in
accuracy. For small increases in M, the run time may not change significantly since
the upper limit on K decreases as M increases, and therefore fewer of these increased
length correlation decision procedures will be performed.

Now let us consider the estimation of P03 (PO, M5NPeb) using simulation. The factors
affecting the simulation results are M,N, Peb, n, and the generation of the PO block code
for N and N.

Let us assume that the problem concerning the time it takes to generate the PO block
code has been taken care of, we then examine the effects of the remaining parameters.

Given n, we would theoretically expect H(d,,in) = aXP(dnin,M,N), iterations to have
a PO block code with minimum distance dau If we apply a x'2 goodness-of-fit test to the
observed and theoretical values of fl(di) then we would accept the hypothesis that we
have indeed generated PO block codes with P~bij - 1) =P(bi3 = 0) = t12 (i = 1I, .. I M a i = 1,. .,N).
In order that the relative frequency of a block error should approach PeB (P, MN 7 Pb) v
the observed values of ii(dmi) must be nonzero over the range of dmin which can influence
the error count. The worst problem here occurs when Pb is small, and hence the small
values of d,,i, exert the most influence on the error count, but these values of dml, are
usually such that t d(min) is zero unless M is very large, possibly on the order of twice the
value of N.

Unlike the ERO case, we must carry out the correlation operation for each iteration.
This adds greatly to the run time. The larger that M and N are, the larger is the increase
in run time.

Now let us consider the problem of the time required to generate the PO block code.
The CDC 3800 computer located at NRL generates a real-valued uniform random number
on (0,13 in 34 x10-- see. For each iteration we need MXN such numbers to determine the
PO code. Hence, it takes 34 x Mx NX1T-6 see to generate a PO block code. Since this must
be done for each iteration, then for n = 10 4 iterations we find that it takes 0. 34X mx N sec
for the simulation program to generate the desired PO block codes.
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Table 7
Comparison of Simulated (Approximate) PeB Values with Analytical (Exact)

Values for an ERO Block Code with M=4. The Number of
Trials n for Each Simulation Run was 10, 000.

Pes(ERO, 4, N, Peb) Computer

N PebSimulated Analytical (sec)

8 0. 2 3.47*10-1 3.414*10-1 19

8 0. 1 1. 12*10-' 1. 136*10-1 20

8 0. 05 2. 98*10- 2 3, 267*10 2 20

16 o. 2 1. 33*10- 1. 282*10-' 24

16 0. 15 5. 57*10-2 5. 255*10-2 23

16 0. 1 1. 37*10-2 1. 326*10-2 22

16 0. 05 .9*10-4 1. 044*10-3 21

32 0. 45 6. 82*10-' 6. 858*10-' 46

32 0. 20 1. 83*10-2 1. 86*10 -2 33

32 0.15 2. 3*10 -3 2. 976*10-3 28

64 0.335 J l. 3 6*10- 1.342*10-' J 79

64 0.30 3.74*10-2 3.584*10-2 71
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As an example of how many seconds are involved, the following table lists values of
0, 34xMxN for several M and N.

I NkM 1 3 16 64 1
64 65. 28 sec 348. 16 see 1,392. 64 sec

1024 704. 48 sec 5570.56 sec 22, 282. 24 sec

Clearly, except for small values of MxN, the time involved in the generation of the PO
block codes restricts the use of simulation in determining PeB (PO, M)NPeb) r

The problems associatedwith the simulation of PeB (ERO or PO, M, N, Peb) as outlined
above leave us with two main avenues of approach. The first approach involves an in-
vestigation of the use of assembly language programming in order to decrease the re-
quired run time of the simulation program. The second approach involves an investiga-
tion of the use of a special-purpose statistical device. Such a device becomes extremely
useful when attempts to circumvent the problem of excessive run times are not success-
ful, since its use is not limited by the cost of long run times as is the case for general-
purpose computers. Thus, a special purpose statistical device can allow us to accom-
modate large values of M and N and small values of Peb in computing PeB(ERO or Po, M,N,
Ptb). We will examine these approaches as part of our continuing research into these
problems.

If we compare the PeB (FRO, 2 ,NPeb) and PeB (P0,2,NPeb) curves, or the Pe(ERO,3,N,
PeB) and PeB(ERO, 3, N, P1 b) curves, we notice that for high Peb values, i. e., Peb close to
1/2, the PO curves surprisingly have a lower probability of block error than the corre-
sponding ERO curves (i. e. , for the same values of M and N). For low values of Feba
i. e., Peb less than 10 -3 the ERO curves have a lower probability of a block error than
the corresponding PO curves. This is due to the fact that the ERG curves tend to zero
as Deb tends to zero, whereas the PO curves tend to their respective nonzero asymptotic
values as Yeb tends to zero. The exact values of Pb for which the above relationships
hold depends on the values of M and N,

AREAS FOR FURTHER INVESTIGATION

In the course of carrying out this research, we have examined closely M-ary com-
munication employing a bit-by-bit decision techniques. As an area of further investtga-
tion we intend to examine the use of block decision techniques. The techniques to be
employed were outlined and examined for certain binary block codes(l). This is a
natural extension of this work due to the processing gain inherent in the use of block
decision techniques. The use of block decisions is extremely important because of the
fact that with block decisions the representation of PeB in terms of an exact formula
capable of being easily computed for all values of M and N seems to be possible.
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APPENDIX A

GENERATING M-ARY ERO AND M-ARY PO BLOCK CODES

In this Appendix, we will describe some methods of generating M-ary ERO and
M-ary PO block codes.

Let us consider first the generation of M-ary ERO block codes. An M-ary ERO
block code can be derived by utilizing a device which can generate the Walsh functions
of order N (Al, A2). The Walsh functions of order N are N time functions taking on the
value 0 or 1 over each of N time periods of length t(t = bit time) such that, except for the
all zeros Walsh function, each function has N/2 zeros and N/2 ones, and the correlation
between any two functions is zero. Thus, by removing the all zeros Walsh function,
the remaining functions form an M = N-1 ERO block code.

Another method of deriving an M-ary ERO block code uses maximal length linear
shift register sequences (AS). If N = 2K, then we know that there is a maximal length
linear shift register sequence of length 2K-1. From the properties of such a sequence,
we know that if we add a zero to the sequence and each of its 2R-2 cyclic shifts, then
these form an M - 2K-1 ERO block code.

Now let us consider the generation of M-ary PO block codes. One method of deriv-
ing an M-ary PO block code utilizes a random number generator which generates MN real
numbers U.. (i = 1, 2,.. ., M and j = 1, 2, ... , N) having a uniform distribution over the
interval [0, 1] Given such a random number generator, which can be found as a library
function in most large computers, if we set bij- 0 when 0 < ujj c 1/2, and bij = 1 when
1/2 < Uij < 1, then the resulting M by N matrix 13 [bij] forms an M-ary PO block code.
There are many available methods of generating real numbers having a uniform distribu-
tion on [0,1] (A4). Another method of deriving an M-ary PO block code involves the out-
come of M trials each consisting of N tossings of an unbiased coin (i. e., P(head) =
P(tail) = 1/2). From the MN outcomes of tossing the unbiased coin we form MN binary
numbers bij (i = 1, 2,. . .M and j = 1, 2,. . . , N) where bij = 0 if the jth outcome of the ith
trial is a head, and b=j 1 if it is a tail. Clearly, the resulting matrix B = [big] forms
an M-ary PO block code.

In attempting to generate an M-ary PO block code, one must consider the effect of
the inherent bias found in any generation method. Suppose that instead of having
P(bik =O)=P(bik= 1)r= V2 (i= 1, 2,*., M and k = 1, 2,.. ., N) due to a bias, we actually have
P(b:ik = 0) = 1/2+E and P(bik = 1) = 1/2-c. In this case, Ni and Nyi (the number of zeros
and ones, respectively, in block B,) are random variables having binomial distributions
1(n, p) with n = N and p = 1/2 + c and p 1/2 -, respectively. Thus, D1 j (the number of
disagreements between blocks Bi and Bj) is a random variable having a binomial distribu-
tion B(n,p) with n = N and p = 1/2 -2E2. Thus, a bias causes the M PO blocks to become
more alike. This decreases the ability of the code to resist errors, and hence increases
the probability of a block error.
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APPENDIX B

DERIVATION OF PeB FORMULAS FOR TERNARY ERO AND PO BLOCK CODES

In this Appendix we derive the probability of block error formulas for ternary ERO
and PO block codes.

Let B = {BI, B2,,B3} denote a ternary ERO block code, and suppose that B, is the
transmitted block. If N123, N12, N, 3 , and N23 represent the number of bits k such that
bIkz: b 2k=b3 k, (blk= b2k) # b3k, (blk=b3k) / b 2k, and (b2k= b3k) / blk, respectively,
then from the properties of ERO blocks we have, assuming that N/4 is an integer,
N123 = N12 = N13 = N23 - N/4. The N/4 bits denoted by N123 do not influence the proba-
bility of a block error since a bit decision error with respect to any of these bits does
not affect the correlation decision. Hence, we must consider the remaining 3Nf4 bits
in determining PeB' If e23, e13, and e12 represent the number of bit errors in the N23,
N13, aIndN12 groups of bits, respectively, then a block error occurs if

(i) e23 < N/4 (and e 23ie 12 > N/4, or e 23 +e13 2 N/4)

or

(ii) e23 = N/4.

Hence,
(N4- /)pj Q(Nl)- N/4N4p QN4K

PB(ERO,3,N,1]b) yb (N/4)PQN/4>J tZ( 4) bbb
J=O ~~~~KI(N/4)-J

(N/4)-J-1 N/4pLQcN/4)2}÷pN/4.

L L Lebebj Cb

Next, let B = {B , B2, B3} denote a ternary PO block code, and suppose that B1 is the
transmitted block. If Dij denotes the number of bit disagreements between blocks Bi and
BJ, then from the properties of PO blocks given above we know that D12 and D13 are in-
dependent binomially distributed random variables B(n,p) with parameters n = N and
p = 1/2. Hence, the joint probability of DI2 and D13 is given by

P(D1 2 , D13) = P(D 1 2 ) P(D 1 3 ) = I ('DI22 13 = 01 N).

Let dmin and dma,, equal the minimum and maximum of D12 and D13, respectively.
Let do equal the number of bits k such that bIk • (b2k= b3k0' Clearly, 0 < do < dmin
The number of bits k such that (blk P b3k) = b2k is D12 - do, and the number of bits k
such that (blk = b2k ) $ b3k is D13 - do. Given D12 and D13, or equivalently dmin and
dmaX I the probability distribution of do is given by

Qjil ( >din A

P (do) = (do / - (dd = °, 1 .. d.i).
r~~~~i 0 ~ ~ u
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It is easy to show that

E P(do) = I (dein = °,1. * * , N)-
8d,= O

Let e1I e2,, and e3 denote the number of errors in the bits 'where blk t (b2k = bak) s
(bik = bsk} 3 b2k, ad (blk = b2k) A 3k respectively. Clearly, from the above we
have u < el C d 0 , O e2 C D 1 2 -do, and 0 < e3 • D1 3 -d. Let

di m /2, (di even) 
(din + 1)12. (di dd)j

{ da../2, (d... even)

(dX + 1)/2, (d.. od)j

Now given D12 D13. and d0, a block error occurs when

(i) el < di, and
el + e 2 2 di' or el + 23 > d4; dmin =

el + e3 : di, or el + e2 Ž dxi, dnin =

D12 and dma = DI(3

DI 3 and d... = DI 2

(ii) el > di.

Hence

PeB(P') 3, NPeb)

where

d 1_1 "f d,.in-d0 d1-e- i
R = 0 P d0 'dit \d0 dJQ.-d`c- -do _in-~ "

E M b~~e E (d J)eb eb nKe

do dx-d

+ Z(d°) PebQeb with T =

e=-' L=dX-'

( da d pL dMax-do-L
L / eb eb

If we combine the terms of PNB (P0, 37NPeb) when D1 2 = 0, D13 = o, or both D12 and
D13 = O, then, since for all these terms we have R 1 and da a, the resulting term Is
(2N+I - 1)/ 2 2N which is easily seen to be the value of P(dmhin = 0,3,N). Thus, we can re-
write the above as

N

PeB(P" sN'Pcb) =I:

D12 =

N (nN ,)(?E ( 12)k(,
22N

D 13=1

4d in

dE=

+ (2N+11)
22N
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It is readily apparent that this equation due to its complicated nature is lengthy to com-
pute. The equation in this form was computed on the CDC 3800 for N = 4, 8, and 16.
The total time required to compute these curves was approximately 2 min. The esti-
mated time required to compute the curve for N = 32 was 10 min. Due to this lengthy
computation time estimate, methods of approximating the above equation were investiga-
ted. Instead of using the double sum over D12 and D13, this was replaced by a single
sum using P(dmin' MN) rather than P(Di2) and P(D13). Hence, one needed only to sum
over din from 1 to N. But this introduced the problem that d,,,x was no longer defined
explicity. It was found that if dmax was determined in terms of dm,,,, using an algorithm
which set dm,,x equal to dm1, plus the smallest integer greater than or equal to (N -dgi)/
(N/4), then the approximation was within i% of the true value. As a further approxima-
tion, an algorithm was employed to determine do given d,,n and dkx and thus avoid the
summing of do from zero to dci,. This algorithm set do =cdi if dciin+dmaxN < di, and
set do = dmtn= clax-N if d min+dmaxcN > di, This algorithm chose the most likely nonzero
value of do consistent with the P(do) distribution. It was found that this additional ap-
proximation introduced no significant change in the approximation to PeB (Po, 3, N, Pbet)
The P,1 curves for N = 32, 64, and 128 were computed using these approximations.
Despite the utilization of these approximations, it took almost 9 min to compute PeB for
the case where N = 128. Hence, this was the largest value of N which was computed for
PeB (PO, 3, NPeb) -

If we consider an e bias, then PeH (PO, c(bias), 3,NPeb) differs from PeB (P0,3, NPeb)
only in that P(D12,D13) becomes

P(DI2 Di 3) = (DN1) (RN) ((/2 ) - 2 e 2 ](D12 +D13) [(1/2) + 2
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APPENDIX C

DERIVATION OF PB FORMULA FOR QUATERNARY ERO BLOCK CODES

In this Appendix we consider the derivation of Pg(ERO, 4,N, Peb)'

Let B = (BR, B2 , B, B4 ) denote a quaternary ERO block code, and suppose B1 is the
transmitted block. If N , N1 , N 12 N 1 3 , N N 123' N 124, and N 134 represent the
number of bits k such that blk b2 k = b3k b4k7 blk * (b2k = bk = b4 kN (blk b2k)

r (bak = b4k),(blk = bsk) A (b2k = b4k)3 (bik b4k) # (b2k = b3k), b4k * (blk = b2k = bN)
1)3k i (bik = b2k = b4k) and b2,, + (blk= 1_k= b4k), respectively, then from the prop-
erties of ERO blocks we have, assuming that N/8 is an integer, No = 1 -N 2F N13
- N14 N123 = N124 = N134 = N/8- The s8 bits denoted by No do not influence the proba-
bility of a block error since a bit decision error with respect to any of these bits does
not affect the correlation decision. Hence, we must consider the remaining 7N/8 bits
in determining PB%. If e, e22, 213, e14, el 23, t124, and e IM represent the nimber
of bit errors in the N1, N12, N13, N14, N123, N124, and N234 groups of bits, respectively,
then a block error occurs if

(i) el + V13 + e14 + 0134 > N/4

or
(ii) el + e12 f e14 + el24 Ž N/4

or

(iii) e1fl + e2+ + e123 2 N14.

Hence,

NIB NIB NIS ~(N/B"s fN/s ) N/S\(N/S) p<K VI+12-1,3+e14tQjN.2) )o+~113,~)
.Pen(ERO',4 NIPFi -Z I I e\j/\ 23/24 eb

E (Z 1 )( 2)C(e3 )e ) li e3e44N2-e
cI=G e12-Q 1l3D ej4,U

where

1, if el + 213 + e Ž4 2 N14, or el + el2 + e14 Ž N/4 or el + e22 + e1 / 2 N4
R =.

T, otherwise

Here

T= A + (I-A) B + (I-uX (1-B)C

where

Nfe

'I 34 =(""'4) -t I +J 3+el4)

NIS
B= I:

'I 2 4= (114 -('J+ ' -) tll

N/S' pl14Q<N/8)e l34

t2134/ eb ebI
'NJ8) pel24Q (N,9)- __24
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and

NIB

C ( N/8) Pel2 3BQ(N/8)-el2 3

e 23=(N/4)-(',+'12-,el3)

This equation was programmed directly on the CDC 3800 located at NRL and gave
PeB (ERO, 4, N, PMb), using various values of Peb for N up to 128, without experiencing any
computational difficulties. When the case N= 256 was tried, the run time increased so
drastically that it became quite apparent that, in order to compute PeTB(ERO, 4, 256, Peb)'
some method of approximation would have to be employed. The fourfold summation
process involved in the exact formula constituted the major computational difficulty.
For N = 64 and N= 128, the summation process involved 6561 and 83, 521 iterations,
respectively. From the run times for these values of N, it was estimated that each
iteration took approximately 1. 5 msec. Since the case N1= 256 involved 1, 185, 921
iterations, the estimated run time was approximately 30 min. The estimated run time
for the case N1= 512 was found to be 8 hr.

Now we can replace the fourfold summation from zero to N/2. But given e errors,
where o < e C N/2, we must then choose particular values of el, el2, e13, and e 14, say

e + eI ~~~3+ 14 e, andel, ej2 ,el 3 ,and 274 such that ei+2t2+e'* +e'C -e

(N/e2) Peeb 2e b PeB I ,e s e1 e;4EEEE( e8) (Ne 2) (W 3) (N/84 1 12'e13'-14 eI2y' " KSNNS '2 13 e14"

(such that elel2
+e13re 14=e )

where

S = Pel Q (N/2)- e P 4

Upon attempting to carry out this scheme of approximation, it was found that the choice
of e* v e*2 I e*1, and ej4 was dependent on Peb and e. This made the approximation
as difficult to carry out as the exact formula. Due to these factors, the case N = 128 was
chosen as a stopping point for the computation of Pe8 (ERO, 4, N, Peb).
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APPENDIX D

DESCRIPTION OF THE DIGITAL COMPUTER SIMULATION
OF THE M-ARY COMMUNICATION SYSTEM

In this Appendix we describe the digital computer simulation of our M-ary com-
munication system.

To initiate the simulation we must generate and/or store the m by N matrix for an
M-ary ERO or PO block code. In the case of an M-ary ERO block code, we can simply
enter the M blocks of N bits as data into core storage. In the case of an M-ary PO
block code, we can use the random number generator technique described in App. A to
generate the desired PO matrix. For the PO case, we will have to generate a new M
byN matrix for each iteration of the basic program.

The choice of a block to be transmitted can, without loss of generality, be made in
a deterministic manner and held constant over all iterations. The use of digital simu-
lation allows us to bypass the transmitter and receiver portions of the system.

To simulate the channel's action on the transmitted block we generate an error
block e = 1ej,. . . ,en ] using the random number generator such that P(e1 = l) 7 ePb' the
probability of a bit error. To do this we generate, using the random number generator,
real numbers uI,... ,uN having a uniform distribution on 10,1] and we set eiŽ = 1 if
0 < Ui • Peb, and ej = 0 if Peb < uiC I. Now by adding modulo two the transmitted black
and the error block, term by term, the block of bit decisions D results.

Next we perform the matrix operations necessary to compute P1 P... Now
using the fact that the transmitted block can be chosen deterministically, and this choice
is the same for all iterations, it is quite simple to test the values p1 ,.. . p'JM for an
error.

Finally, we need only record the errors and, after repeating the desired number of
iterations, determine the relative frequency of a block error.

The simulation as described above was implemented in FORTRAN computer
language.

30


